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PHYSICAL MECHANISM OF WAVE-PARTICLE RESONANCES

IN A CURVED MAGNETIC FIELD

I. IWTRODTCTION

One of the most important phenomena in plasma physics is the

wave-particle resonance.1  These resonances allow collisionless

plasmas to undergo irreversible processes such as energy and

momentum exchange, and are crucial to such diverse phenomena as

RF heating of laboratory plasmas,2 isotope separationl and anoma-

lous transport of oarticles, momenta and energies across boundary

layers. 4 The classic work of Landau demonstrated that in an

unmapnetized collisionless Plasma, an electron plasma wave is

damned by electrons that are in resonance with the wave; those

particles which have a velocity such that w - kv .1 In

magnetized plasmas, Landau resonances can also occur

when k, - VV? , the component of the wave vector parallel to

the magnetic field B, is non-zero (for w - nQ2 - kI v with P the

cyclotron frecuency and n an integer). On the other hand, flute

modes with k, M 0 are important in a number of physical

phenomena, includine plasma instabilities and radio frequency

heating. If the confining magnetic field is inhomooeneous, a

cross-field, wave-particle resonance can occur for particles

undergoing a magnetic drift, i.e., w - k-VB where V may be due

to the spatial inhomoeeneity of the magnetic field (7B drift)

and/or to the curvature of the magnetic field (curvature

drift). These drifts are described as follows.

In an inhomogeneous magnetic field, the two important magne-

tic drifts that can exist 5 are the 7B drift

2 x V)B

-VB 7-B 2

and the curvature drift

v1 - x (2)

where Q - e/mc is the cyclotron frecuency. If both types of

Manuscript submitted September 21, 1981.
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drifts exist and the magnetic field is Produced by an external

source (so that there are no plasma currents) then the total

drift is Riven by

v 2 ~.2 (B X
1B Iv /2 S1B 2

Two salient features of VB are the following. First, VB is a

microscopic drift so that individual particles acutally undergo a
2 2

drift proportional to v I and/or vI . It is this pronerty that

allows a wave-Darticle resonance to occur; unlike diamagnetic

drifts (due to Vn or 7T) which are macroscopic drifts.

Second, V B is charge dependent so that electrons and ions drift

in opposite directions. This implies that only one species of

particles can be resonant with a given wave. Recently, we have

investigated the physical processes underlying the wave-Darticle

resonance due to a VB drift (w - k .V ).AP7 In this paper we

complete our study of magnetic drift resonances by focussing on

curvature drift resonances (w ~ k.V ). Of course, both drifts- ~C
exist in many plasmas of interest but we will ignore the VB drift

for pedagogical purposes.

The curvature drift can be viewed as arising from the

centrifueal force acting on the particle in its rest frame.F

This is shown in Fig. 1. Rere, B - B (z) e + B e , P is the

centripetal force acting on the particle as it follows the curved

field line and Fcf = -Fc0 is the centrifugal force felt by the

particle in its rest frame. We restrict our attention to the xy

plane and take

2
mv I

C

where Pc is the radius of curvature of the field at the origin.

'he curvature drift can then be written as

2

-c mQ B RQ y
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so that ions (+e) drift in the +y-direction and electrons (-e)

drift in the -y-direction as shown in Fig. 1. From Eq. (5) it is

clear that a wave travelling in the +y-direction can be in phase

with ions if w - kyv r/Rcn where v is the parallel velocity

2
necessary for resonance. Also, since Vc depends upon v , both

+vhr and -v1 r particles can be in resonance.

We point out that in some previous treatments of the

curvature drift, the centrifugal force Fcf is relkced by acf a~in w re strictby
gravitational force such that = -2T/mR e (again, we restrict

c x
our attention to the xy plane). q ' 10 The curvature drift then

hecoimes V = g/0 e . For this revresentation of Vc wave--C y C

particle resonances cannot occur and only the non-resonant

behavior of the particles due to Vc is considered. '"bat is, all

of the particles are drifting at V c . Thus, by simply
considering V = g/P e, potentially important wave-Darticle

resonances are neglected.

T he purpose of this paper is to discuss the physical

mechanism of wave-Darticle resonances in a curved magnetic

field. The scheme of the paper is as follows. In the next

section we present a discussion of the energy exchange process

that occurs in this type of resonance. In Section III we present

a derivation of the damping/growth rate due to this resonance

based upon the physical arguments set forth in Section II. In

the final section we discuss an application of this work to the

lower-hybrid-drift instability and nonlinear effects.

3



II. PHYSICAL DRSCRIPTION OF THP WAVP-PARTICL? RFSONANCE

mo elucidate the energy exchange mechanism of wave-particle

resonances in a curved magnetic field we consider the following

simplified model. A slab geometry is used with

- (z ; + P e as shown in Fig. 1. The plasma is assumed

to be homogeneous. An electrostatic wave is imposed on the

system such that F - 6F sin (ky - wt) e with w <<~ y
and krL << I where 9 is the cyclotron frequency and rL is the

mean particle tarmor radius. For this wave, which is propagating

in the +y-direction (see Fig. 2), only the positively charged

species can resonate with it so we limit our discussion to the

ions. Resonant ions satisfy the phase matching condition

2
V r  0v(

ph k c R c5c

where V r is the curvature drift, v is the parallel velocity of
c r

the Particle in resonance and Rc is the local radius of curvature

of the field. Note that in Fig. 2 we have translated our coordi-

nate system to the wave frame.

Vesonant particles at y = y1 see a constant electric

field P - 6P e and F x B drift in the +x-Airection with a
~ y

velocitv 61V cST/B. Since these particles are moving in the

same direction as the centripetal force, the centripetal force is

loin, work on the particles and therefore is increasing their

Parallel energy. Thus, these particles absorb energy from the

wave and cause damping. Alternatively, the increase in the

Particle's parallel energy can be obtained from conservation of

angular momentum, L - v IR - const. As the particles move in the

+x-direction, the radius of rotation decreases so

that vI increases to conserve L.

On the other hand, resonant particles at y - Y2 see a

constant electric field F - -6 • and R x B drift in the -x-
~ y

direction with a velocity 8VM - cSv/B. Since these Particles are

moving opposite to the centripetal force, they must extend energy

to overcome this force and hence, decrease their parallel

4
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Fig. 1 - Slab geometry used in the analysis with B - Be + Bz Here, FP is the
centripetal force, Ff is the centrifugal force and V,, is the curvature drift of species
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Fig. 2 - Electrostatic wave in a plasma containing a

curved magnetic field (wave frame)



energy. Thus, these particles lose energy to the wave and cause

wave growth. Again, this can be seen from conservation of L. As

Particles move in the -x-direction, the radius of rotation

increases so that v, decreases to conserve L.

Clearly, if there are an equal number of particles at

position (I) and (2), then there is no net energy exchange

between the wave and the resonant particles. However, this is

not the situation in general as we now show. The key point is

that the number of resonant particles is locally proportional

to f(v ,x), the particle distribution function. As in the case

of Landau damping, unequal numbers of particles participate in

energy Rain/loss transfer to the wave if af/3v * 0 (or, in this

case also 3f/3x * 0). We now expand upon this point.

We consider resonant particles (v, = V ) at x = x and at

O r 0
some time to + At , i.e., f(x 0 ,v ,t +At). We ask the question,

where were these particles at an earlier time t = to" A portion

of these particles were at position (I (x = x 0 Ax, y=y1

with a velocity v, = V r - Av I. In a time At, these particles

move a distance Ax and increase their velocity by Av, to arrive

at x = xo and v A = VOr * Thus, these particles are described

by f(xo0 Ax,vq r - Av,,to) and abosrb energy from the wave, i.e.,

lead to damping. The rest of the particles were at position

(2) (x = x0 + Ax, y y2 ) with a velocity v, = V Ar + AV In a

time At these particles also move a distance Ax but decrease

their velocity by AvI to arrive at x = xo and v a V Ar. Thus,

these particles are described by f(x +AxV Wr+ AVAt ) and give

energy to the wave, i.e., lead to growth. Thus, if

f(xo0Ax'V r'Avt ) > f(x 0 +Ax,v O+AvA,t 0) then more particles

absorb energy from the wave than give energy to the wave and wave

damping results. replectinp any spatial dependence on f, i.e.,

no density or temperature gradients, this means that af/avA < C)

for wave damping, as in the Landau resonance. Alternatively,

if af/avI > 0 then wave growtb can result. vinally, we note

that resonance Darticles exist at both v, = V
r 2 . ar

an , r i c A a Vor symmetric particle



distribution functions in vI this introduces a factor of 2 in the

damping/arowth rate (see Fig. 3).

Thus, energy transfer can occur in wave-particle resonances

due to magnetic f'ield curvature drifts because the wave electric

field cause particles to E x P drift in the same direction or

oDnosite to the centripetal force acting on the particle as it

moves along the curved field line. Alternatively, the energy

transfer mechanism can be viewed as conservation of anpular

momentum, L - v IR. We now derive a s~ecific exoression for the

'Imping/growth rate due to a maanetic curvature drift-wave

resonance based on this physical Dicture.

-Vjjr-AVjj -Vjj r  --V11r'AVII VIlr-AVII Vjjr V11r+AVII -vii

Fig. 3 - Particle distribution function indicating resonant parallel velocities. Here,
v = V1 vr-- v, and v, - vl 4+ Av are the reonant velocities at position (1), and

v 0 v + Av I and v I -v I- Av Iare the resonant velocities at position (2). The
+ signs indicate that particles at position (1) gain energy, while the -signs at posi-
tion (2) indicate that the particles lose energy.

.18
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III. PHYSICAL DERIVATION OF THE WAVE DAMPING/GROWTH RATP

We calculate the damping/growth of the wave due to the

Darticle curvature drift resonance using energy conservation.

Total energy conservaton can be expessed as

S+~ = 0 (7')
p w

where F and Z are the particle and wave energy density, resnec-pw

tively, and the dot indicates a time differentiation. The wave

energy density contains both the electrostatic fiela energy and

the sloshine energy of the particles. Our method is similar to

that of Meade, 1 1 who calculated the growth rate of the universal

drift instability.

The wave energy density of an electrostatic wave in a

lossless medium is given by

= rw a/aw (A)
w 87

where D is the dielectric function. Assuming that the perturbed

Oield varies as exp (iwt) where w = r + iy we obtain

w 47

The change in energy of a single particle is Riven by

AW F - = F Ax (10)
p '-

2
where F = mv 2r/R is the centripetal force actinm on the

x r c
particle locally at (x,z) = (0,0). We then obtain

2

W v Ir (x (11)
p Rc

Pince the particle velocity is SV - cSE/B e we find that

my cSFAW R 1 At (12)

c

9



or

my c6O r
p RC

"oting that V r /Rc , we rewrite Pq. (iV as

- e 6R V-
p C

so that the time rate of change of a single particle's energy is

related to its Joule heatine since Z - enV for the curvature-C
drift Darticles. From Eq. (14) we point out that for 6F > 0 the

particle gains energy while for 6?, < 0 it loses energy.

The time rate of change of the total particle energy

density Z is found by calculating the change of energy of allD

the resonant particles in a time At. We integrate the
equilibrium distribution function over the range vnr - AV r to

V or + AV r where AVwr is the spread in vl for a particle to

remain in resonance with the wave. Making use of Pq. (14) we

find that

o = e6ir~r  rf(vr-AvRxo'-Ax) - f(vr+Av.,x+Ax'l

+ rf(-v +AV x-Ax) - f(-v r-AVx +Arx) AV C

where AvI and Ax reDresent the change in parallel velocity and

position in a time At, respectively, and the * and v.

integrations have been performed. In Eq. (q) we only consider a

density inhomogeneity since a temperature inhomoeeneity is

usually only important for flute modes when kr L = I and we are

assuming k2 2 << 1.rL

From Eq. (I) we note that the resonant particles in the

first bracket occur at v - +V fr while those in the second

bracket occur at v, M -VOr (see Fig. 3). Moreover, the particles

at (x0 - Ax, vOr Av I and ( ° - Ax, -V wr + A increase their

10



energy (+ sign in Rq. (15)) and particles

at (x Ax, V r + AV ) and (xo + Ax, -V - Av I) decrease their

energy (- sign in Ro. (I)). We can rewrite Rq. fir) as

SV (r-(AV + Ax af)
p c I r x V VrX °

+(AV If.. Ax Lf) I AV

I av I ax V Ir'xo Or

Assuming f is symmetric in v, , i.e.,

(f/av ) - / r

we finally ohtain

- -2eV r FAv + Ax A--hr (AVi
P c I vI Ix VIr x

so that the dependence of on the slope of the distributionp

function is evident.

We now compute Ax, AvI and AV r as follows. The distance a

oarticle moves in a time At is simply Ax = 6VPAt = (c6E/B)At.

'he change is a particle's parallel energy is found from rq. (12)

and the definition AW A(mv 1/2). We find that

P IV Or asp

'"'his can also be obtained from the conservation of anpular

momentum, i.e., L - vIR - constant and using aR/at - -SVr.

Finally, AVOr is determined by noting that for a particle to

remain in resonance with a wave, we require

AV r (20)
c kAt

'"bat is, articles will only be in resonance (w - kvr) as long as
c

11



they do not move more than a half-wavelenpth in a time At.

waking use of the definition of Vr (Eq. (6)) we find that
C

9R

AVer u c lrkAt (21)

Substituting Ax, Av, and AV r into Eq. (IR), we arrive at

2 RC 6
we w r f  c -1 2  (22)

p mk 2  av* v :x vnr,xo

The damping/growth rate due to the curvature drift resonance

is now found from Eqs. (7), (0) anA (22). We find that

Yc W2 raf  Rc af!
__ = I , R__ - + _ rw !E l(23)

k 2 avI v1 Ix VOrXo

where w2 . Ane2/m, Q - eB/mc and we have normalized f
p

to no = n(x=x ). Thus, Vq. (23) is a general expression for the

damping/growth rate, yc, of an electrostatic wave propagating

across a magnetic field due to a wave-particle resonance arising

from magnetic field curvature drifting particleg. Tnterestingly,

for 3f/3x = n, Pq. (23) is the same as for the Landau resonance

except for an additional factor of 2 due to the two resonances

at ±v r.* 1 14

12



IV. DISCUSSION

A substantial amount of literature exists on the physics of

Landau wave-particle resonances (i.e., w - k v1 ),
1 2 ,1 3 yet there

is little discussion of cross-field, wave-particle resonances due

to magnetic drifts. The two important cross-field magnetic

drifts are the VH drift and the magnetic curvature drift.

Recently, we have investigated the physics of the wave-particle

resonance for VB drifting particles. 6 ,7  In this paper we focus

our attention on the energy exchange between waves and resonant

curvature drifting particles (w k.V ). The curvature drift can

be viewed as arising from the centrifugal force acting on the

particle in the particle's rest frame. That is, V C F x B2 'c ~cf ~
where Fcf W -mvI/R c and Rc is the radius of curvature of the
field line. Curvature drifting particles, resonant with a wave,

see a constant electric field which causes them to E x B drift in

the same direction or opposite to the centripetal force acting on

them, depending on the phase of the wave. The particle's energy

then changes by an amount AW, = A(mv /2) - F Ax
2 p cp

where FcP a mvI/R c is the centripetal force and Ax - (cSE/B)At.

Depending on the relative number of particles absorbing energy

from or giving energy to the wave, which is a function of the

slope of the particle distribution function in v I and x space,

wave damping or growth can occur. Alternatively, the energy

exchange process can be viewed in terms of conservation of

angular momentum, L - vIR comnst. The F x B drift of the

resonant particles causes the particles to move to smaller or

larger radii of rotation (R) depending on the phase of the

wave. Thus, v I increases or decreases accordingly in order to

conserve L. A general equation for the damping/growth rate has

been derived based upon these physical arguments, Eq.(23). As an

application of this theory we now consider the lower-hybrid-drift

wave instability.

The dielectric function for the lower-hybrid-drift mode is

given by
4

13



. ..2 2 -

D - pe + (I - kVd/W) (24)
Q2 k 2 di
e kv i

where V. = 2 / 2Q alnn/3x and we have assumed T (< T

Vdi << v i and w pe 
> > ne for simplicity. This mode propagates in

the direction of the ion diamagnetic drift. In writing Eq. (24)

we have ignored the ion Landau resonance to highlight the

curvature resonance. Since this instability requires y >

the ions behave as unmagnetized particles and cannot participate

in the type of resonance discussed in this paper. On the other

hand, field line curvature does effect the ion equilibrium

drift. 14 We choose the field line curvature to be such that an

electron-wave resonance can occur. The electron distribution

function is chosen to be

e n(X) (1/we)1/2 exp(-v/v 2 ) (25)fe nee
0

where v2 . 2T /m and X - x - v /Qe is a constant of the
e e e y e

motion. Expanding X about xo we obtain

a- f__ - = f (26)
AV 2 f x = n

e

where E al nn/3x. Using Eqs. (23) and (26), we find that
n

. -c Ti (I - C R /2C 2) C exp(-c 2) (27)
wT n c

e

where v /V (w/k ) and V Ve/R n If we definewhre I r e ( kce) aned Vce

F'c M 1/c 5then Eq. (27) is consistent with the results of Rahal

and Gary. For the curvature damping to be significant one

requires that C 2 1 which places the following condition on

R We take w/k - Vdi so that we require Vdi - V which leads
-i1 di cc

to Rc - 2L n(T e/T ) where L n - (31nn/3x) - 1/c n . Thus, the

radius of curvature of the magnetic field lines has to be

comparable to the scale length of the density gradient for the

electron curvature drift-wave resonance to be a significant

damping mechanism for the lower-hybrid-drift wave instability.

It should be noted that this electron-wave resonance always leads

14



to damping. For the geometry shown in Fig. 1, we require U < 0
for an electron-wave resonance to occur because Vd ' Vd e

from Eq. (27) it is clear that Cn < 0 leads to damping. On the

other hand, if en > 0, (which could conceivably lead to yc > ,

no resonance can occur because then the wave and drifting

electrons are not moving in the same direction. In fact, this is

the situation considered by Rahal and Gary 1 5 so that they did not

find any resonance damping.

Finally, we note that this resonance may lead to spatial

trapping of particles as in the case of the VB drift-wave

resonance. That is, as particles drift in the x-direction they

eventually lose resonance with the wave; they either drift faster

or slower than the wave. This can arise because vI changes, or

because Rc and n are functions of x. The particles then "circle

around" and become resonant with the wave in its opposite

phase. Thus, they drift in the opposite direction and become

trapped. However, it is unclear that such a process can occur

since it requires Ttr << T b where Ttr is the spatial trapping

period and Tb is the bounce period in a curved field (e.g.,

mirroring period), which is probably difficult to satisfy in most

plasmas of interest.
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